Gedankenlesen bei Ratten

(29.11.2018) Wissenschaftler können vorhersagen, wohin eine Ratte als nächstes gehen wird, je nachdem, wie Neuronen in ihrem Hippocampus feuern – Studie erschienen in Neuron

So genannte Platzzellen senden Signale, wenn wir uns an einer bestimmten Position befinden - diese Entdeckung brachte John O'Keefe, May-Britt Moser und Edvard Moser 2014 den Nobelpreis für Medizin ein. Basierend darauf, welche Platzzelle feuert, können Wissenschaftler bestimmen, wo sich eine Ratte befindet.

Neurowissenschaftler können nun sagen, wohin eine Ratte als nächstes gehen wird, und zwar je nachdem, welches Neuron feuert während die Ratte eine Aufgabe löst, die ihr Referenzgedächtnis testet.

Wohin als nächstes?; Bildquelle: IST Austria/Birgit Rieger
Wohin als nächstes?

Das ist das Ergebnis einer heute im Fachjournal Neuron veröffentlichten Studie, die von der Gruppe von Jozsef Csicsvari am Institute of Science and Technology Austria (IST Austria) mit Erstautor und Postdoc Haibing Xu sowie den ehemaligen Postdocs Peter Baracskay und Joseph O'Neill, der heute an der Universität Cardiff lehrt, durchgeführt wurde.

Wissenschaftler können daraus, welche Platzzelle im Hippocampus Signale sendet, ableiten, wo sich eine Ratte befindet. Manchmal entspricht jedoch die aktive Platzzelle nicht dem aktuellen Standort der Ratte.

„Das gibt uns einen Einblick darin, was das Tier über den Raum denkt", sagt Jozsef Csicsvari. "Wir haben dieses Konzept benutzt, um zu verstehen, wie Ratten bei Aufgaben denken, die ihr räumliches Gedächtnis testen."

In den Experimenten navigierten Ratten durch ein Labyrinth mit acht Armen, drei davon enthielten Futter.

Die Ratten besuchten das Labyrinth erneut, so dass sie Erinnerungen daran hatten, wo die Belohnungen versteckt waren. Diese Aufgabe trennt zwei verschiedene Formen des räumlichen Gedächtnisses: Referenz- und Arbeitsgedächtnis.

Das Referenzgedächtnis ist der Speicher, der es einer Ratte ermöglicht, sich daran zu erinnern, welche Arme Belohnungen enthalten und welche nicht.

Das Arbeitsgedächtnis ist das Gedächtnis, das den Überblick darüber behält, welche Arme die Ratte noch nicht besucht hat und welche sie bereits besucht hat. Die Forscher testen das reine Arbeitsgedächtnis, indem sie das Experiment so modifizierten, dass nur Arme, die Belohnungen enthielten, geöffnet waren, oder testeten das reine Referenzgedächtnis, indem sie bereits besuchte Arme schlossen.

Die Forscher fragten dann: Wie feuern Zellen, wenn Ratten durch ein Labyrinth navigieren, und wie unterscheidet sich das Feuern zwischen Referenz- und Arbeitsgedächtnisaufgaben? In der Mitte des Labyrinths, bevor die Ratte den nächsten Arm betritt, entspricht die Abfolge der Zellen, die feuern, entweder der Route im zuletzt besuchten Arm genommen oder dem Arm, durch den die Ratte als nächstes laufen wird.

Bei den Tests des Referenzspeichers entspricht die Sequenz dem nächsten Labyrintharm, den die Ratte besuchen wird. Das gibt den Forschern einen Einblick in die unmittelbaren Pläne der Ratte. „Das Tier denkt an einen anderen Ort als den, an dem es sich befindet. Tatsächlich können wir vorhersagen, welchen Arm die Ratte als nächstes betreten wird", erklärt Csicsvari.

Die Forscher können nicht nur vorhersagen, wohin die Ratte als nächstes gehen wird, sie wissen auch, wann die Ratte einen Fehler machen wird, sagt Csicsvari: „Wenn die Ratte einen Fehler macht, erinnert sie sich an einen zufälligen Weg. Basierend auf den Platzzellen können wir vorhersagen, dass die Ratte einen Fehler machen wird, bevor sie ihn begeht."

Die Vorhersage funktioniert allerdings nicht bei Aufgaben, die den Arbeitsspeicher testen. Bei diesen entspricht das Feuern der Platzzellen jenem Arm, den das Tier zuletzt besucht hat.

Die Forscher gehen davon aus, dass das Gehirn verschiedene Strategien zur Lösung von Referenz- und Arbeitsgedächtnisaufgaben einsetzt. "Mit dem Referenzspeicher navigiert das Gehirn und erinnert sich ‘das ein Ort ist, den ich besuchen muss‘. Dabei wird der Hippocampus genutzt, der für räumliche Aufgaben wichtig ist.

Der Arbeitsspeicher ist abstrakter, jeder Ort ist ein Punkt auf der Liste zu besuchender Orte. Der Hippocampus signalisiert wahrscheinlich dem präfrontalen Kortex, wo die Ratte war, und der präfrontale Kortex verfolgt, welche Gegenstände er abhaken kann", fasst Csicsvari zusammen.

Publikation

Haibing Xu, Peter Baracskay,Joseph O’Neill, and Jozsef Csicsvari, “Assembly responses of hippocampal CA1 place cells predict learned behavior in goal-directed spatial tasks on the radial eight-arm maze", Neuron, 2018, DOI: 10.1016/j.neuron.2018.11.015



Artikel kommentieren

Weitere Meldungen

Eine der kleinsten Känguruarten der Welt: Tammar Wallaby; Bildquelle: DDr. Simone Fietz

Tammar Wallabys: Wie das Großhirn groß wurde

Im Laufe der Evolution hat sich das Großhirn von Säugetieren immer weiter vergrößert. Das sich entwickelnde Großhirn des Menschen enthält einen besonderen Zelltyp, die basale radiale Gliazelle (bRG)
Weiterlesen

Lage verschiedener Gehirnareale im Hund: 3-Dimensionale Rekonstruktion der Haut und des Knochens aus dem MRT eines Beagles und die Projektion des Gehirnatlas. Die verschiedenen Gehirn; Bildquelle: Dr. med. vet. Björn Nitzsche

Wie die Hundezucht die Form und die Größe des Hundegehirns verändert?

Die Domestizierung und gezielte Zucht von Haushunden hat ihre Kopfform verschiedentlich verändert. Umbildungen führen bei einigen Rassen zum Beispiel zu verengten Atemwegen
Weiterlesen

Freie Universität Berlin

Projekt „PeTESys“: Forschungsprojekt zur Messung der Gehirnaktivität bei Mensch und Tier

EXIST-Forschungstransfer für interdisziplinäres Projekt am Fachbereich Veterinärmedizin der Freien Universität Berlin
Weiterlesen

Die Virtual Reality-Arena für Fliegen.; Bildquelle: FreemoVR

Virtuelle Welten erlauben neue experimentelle Designs für die Untersuchung von Hirnfunktionen

Verhaltensexperimente sind nützliche Werkzeuge um Gehirnfunktionen zu untersuchen. Standardversuche zur Erforschung des Verhaltens von beliebten Labortieren wie Fischen, Fliegen oder Mäusen imitieren aber nur unvollständig die natürlichen Bedingungen
Weiterlesen

Prof. Dr. Gerhard von der Emde und Sarah Schumacher vom Institut für Zoologie der Universität Bonn mit einem Elefantenrüsselfisch im Aquarium; Bildquelle: Barbara Frommann/Uni Bonn

Elefantenrüsselfisch: Kleines Gehirn vollbringt erstaunliche Leistung

Der Elefantenrüsselfisch erkundet Gegenstände in seiner Umgebung, indem er seine Augen oder seinen elektrischen Sinn einsetzt – manchmal auch beides zusammen
Weiterlesen

Rabenkrähen lernten, beliebige Bilder in zwei Gruppen einzuteilen. Einzelne Nervenzellen reagierten auf alle Bilder, die in eine bestimmte Gruppe gehörten ‒ unabhängig vom Bildmotiv; Bildquelle: Lena Veit

Nervenzellen im Krähengehirn ordnen Bilder richtig zu

Während des Lernens entstehen Reaktionsmuster, die relevante Zusammenhänge anzeigen ‒ ähnlich wie beim Säugetier
Weiterlesen

Blind für die Blickrichtung: Die Wissenschaftler zeigten ihren Probanden Fotos von Gesichtern, die in unterschiedliche Richtungen schauten. Anders als erwartet konnten die Nervenzellen im Mandelkern Unterschiede in der Blickrichtung nicht detektieren; Bildquelle: AG Prof. Mormann

Hirnstudie offenbart unerwarteten Unterschied zwischen Affe und Mensch

Eine Studie an der Universität Bonn offenbart einen unerwarteten Unterschied in der Informationsverarbeitung von Affe und Mensch. Beide können sehr schnell erkennen, wohin ein Gegenüber blickt
Weiterlesen

nMLF-Region im Mittelhirn von Zebrafischlarven. Mit Hilfe der Optogenetik können Forscher hier einzelne Nervenzellen (lila) gezielt aktivieren; Bildquelle: MPI für Neurobiologie / Thiele

Wie das Fischgehirn den Schwanz steuert

Damit ein Fisch vorwärts schwimmen kann, müssen Nervenzellen in seinem Gehirn und Rückenmark fein abgestimmt die Hin- und Her-Bewegungen des Schwanzes kontrollieren. Doch auch die Stellung des Schwanzes, die die Schwimmrichtung vorgibt, muss durch Hirnaktivität feinjustiert werden
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen