Einfluss der Ozeanversauerung auf Steinkorallen simuliert

(25.11.2012) Die Versauerung unserer Ozeane und ihre Folgen für die Unterwasserwelt ist ein drängendes Problem. Am ZMT haben Wissenschaftler ein mathematisches Modell entwickelt, mit dem sie unterschiedliche Szenarien der Ozeanversauerung vorgeben und deren Auswirkungen auf Steinkorallen prüfen können.

Die Versauerung unserer Ozeane und ihre Folgen für die Unterwasserwelt ist ein drängendes Problem, das die Wissenschaftler weltweit beschäftigt.


Korallenpolypen

Ein erschreckendes Szenario sind beispielsweise Steinkorallen, die ihre Fähigkeit zur Kalkskelettbildung verlieren und nicht mehr in der Lage sind, Riffe mit all ihren Schutz- und Lebensräumen für die außergewöhnliche Artenvielfalt zu bilden. Doch wie wahrscheinlich ist eine solche Entwicklung?

Um fundierte Voraussagen machen zu können, müssen zunächst die Prozesse der Skelettbildung und ihre Reaktion auf Störfaktoren bei Korallen verstanden werden. Am Leibniz-Zentrum für Marine Tropenökologie in Bremen haben Wissenschaftler ein mathematisches Modell entwickelt, das die Kalkbildung der Korallenpolypen auf der Zellebene detailliert nachbildet.

“Mit so einem Modell kann man unterschiedliche Szenarien der Ozeanversauerung vorgeben und deren Auswirkungen auf Steinkorallen prüfen", sagt der Ökologe Sönke Hohn.

CO2 aus der Atmosphäre löst sich im Meer und bildet Kohlensäure. Die steigenden Kohlendioxidwerte führen dazu, dass das Wasser langsam versauert. Während das Oberflächenwasser der Ozeane heute einen pH-Wert von ca. 8,2 aufweist, wird es im Jahr 2100 voraussichtlich nur noch 7,8 betragen. Ein saures Milieu greift aber Kalkstrukturen an, der Kalk löst sich auf.

Dass die Kalkskelettbildung vieler Tiere unter den erhöhten CO2 Werten im Meer leidet, ist mittlerweile bekannt. Bilder von "nackten" Korallenpolypen, die pH-Werten von 7,4 ausgesetzt worden waren, gingen in einer Studie des Magazins “Science" um die Welt. Wie ein gestörter Kalkbildungsprozess genau abläuft, war jedoch unklar. Der Antwort sind die Wissenschaftler aus Bremen nun näher gekommen.

Polypen scheiden an ihrem Fuß Kalziumionen aus, die gemeinsam mit Karbonationen zu festem Kalk auskristallisieren und dadurch Skelettstrukturen bilden. Alle Polypen einer Koralle sind über eine Gewebeschicht miteinander verbunden. Diese trennt das umgebende Meerwasser von der Flüssigkeit, in der das Kalkskelett gebildet wird.

Die Wissenschaftler konnten mit ihrem mathematischen Ansatz nachweisen, dass CO2 durch die Gewebsschichten in die kalzifizierende Flüssigkeit eindringt. Trotz aktiver Regulierung ihres Stofftransportes sind Polypen nicht in der Lage, bei erhöhten Kohlendioxidwerten gegen die Diffusion anzugehen.

Das Modell bildet die sehr komplexen biochemischen Prozesse des Stoffaustausches und der Kalkbildung in vier Räumen ab: dem umgebenden Meerwasser, dem Polypengewebe, dem Magen und der kalzifizierenden Flüssigkeit unter den Polypen. Es basiert auf Daten aus verschiedenen Studien, vor allem aber von Versuchsreihen, die am ZMT stattfanden. Mit Mikrosonden waren pH-Wert und Kalziumkonzentrationen unterhalb des Polypengewebes gemessen worden.

“Doch auch sehr aufwendige Laboruntersuchungen reichen nicht aus, um den Prozess der Kalzifizierung vollständig zu verstehen" meint Agostino Merico, der den Modellierungsansatz mitentwickelte.

“Indem wir alle relevanten physiologischen Prozesse simulieren, entwirrt unser Modell die komplexen Vorgänge und quantifiziert die Effekte der Ozeanversauerung auf die Organismen." So ergaben Berechnungen mit erhöhten CO2 Werten in der Atmosphäre, wie sie in 2100 im schlimmsten Falle zu erwarten sind, eine um 10% reduzierte Kalkbildung bei Steinkorallen. In einem nächsten Schritt soll auch der Einfluss der Ozeanerwärmung auf die Kalkbildung mit dem Modell untersucht werden.

Hohn, S., Merico, A. (2012) Modelling coral polyp calcification in relation to ocean acidification, Biogeosciences, 9, 4441-4454. doi: 10.5194/bg-9-4441-2012.



Weitere Meldungen

Die Aufnahme im Digitalmikroskop offenbart: eine Dornenkronenkoralle (Seriatopora hystrix) hat eine Faser in ihr Kalkskelett eingebaut; Bildquelle: Florian Hierl/Leibniz-Zentrum für Marine Tropenforschung

Mikroplastik in Korallen

Wie Plastik das Leben im Ozean beeinträchtigt, ist eine der drängenden Fragen der Meeresforschung. Eine neue Studie des Leibniz-Zentrums für Marine Tropenforschung (ZMT) befasst sich mit der Auswirkung von Mikroplastik auf Korallen
Weiterlesen

Korallen ; Bildquelle: Jessica Reichert

Stress bei Korallen ist messbar

Gießener Wissenschaftlerinnen und Wissenschaftler entwickeln Methode zur Vermessung von Wachstumsveränderungen bei Steinkorallen
Weiterlesen

Der HyperDiver kam in der südlichen Karibik, den Marianen im Pazifik und in Papua Neu-Guinea zum Einsatz. Mit dem HyperDiver-System kann ein Taucher bis zu 40 Quadratmeter Riff jede Minute; Bildquelle: Benjamin Mueller, Carmabi

Besseres Monitoring der Korallenriffe mit dem HyperDiver

Bremer Wissenschaftler gründen mithilfe des EXIST-Programms neue Firma
Weiterlesen

Starten der Drohne im Riff vor Moorea; Bildquelle: Alessio Rovere, Leibniz-Zentrum für Marine Tropenforschung

Drohnen im Einsatz für die Korallenriffforschung

Drohnen werden im zivilen Bereich bisher häufig für Film- und Fotoaufnahmen verwendet. Der Einsatz dieser unbemannten Fluggeräte für Forschungszwecke steckt jedoch noch in den Anfängen
Weiterlesen

Anilocra gigantea; Bildquelle: Jean-Lou Justine/Muséum national d'Histoire naturelle

Fischparasiten: das Aussterben einer Korallenfischart würde zum Aussterben von 10 Parasitenarten führen

Korallenriffe erfüllen wesentliche ökologische Funktionen und beherbergen mehr als 25% der weltweiten biologischen Meeresvielfalt
Weiterlesen

EU-Forschungsprojekt CORALZOO im Tiergarten Schönbrunn; Bildquelle: Michael Kuba

EU-Forschungsprojekt CORALZOO im Tiergarten Schönbrunn

Der Tiergarten Schönbrunn nimmt am EU-Forschungsprojekt CORALZOO teil, bei dem es darum geht, das Wachstum und die Vermehrung von Steinkorallen besser zu verstehen. Eines der Ziele des Projektes ist es, die mathematischen Regeln zu finden, nach denen sich Korallenstöcke verzweigen
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen